skip to main content


Search for: All records

Creators/Authors contains: "Ren, Jiaen"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Ionospheric total electron content (TEC) derived from multi-frequency Global Navigation Satellite System (GNSS) signals and the relevant products have become one of the most utilized parameters in the space weather and ionospheric research community. However, there are a couple of challenges in using the global TEC map data including large data gaps over oceans and the potential of losing meso-scale ionospheric structures when applying traditional reconstruction and smoothing algorithms. In this paper, we describe and release a global TEC map database, constructed and completed based on the Madrigal TEC database with a novel video imputation algorithm called VISTA (Video Imputation with SoftImpute, Temporal smoothing and Auxiliary data). The complete TEC maps reveal important large-scale TEC structures and preserve the observed meso-scale structures. Basic ideas and the pipeline of the video imputation algorithm are introduced briefly, followed by discussions on the computational costs and fine tuning of the adopted algorithm. Discussions on potential usages of the complete TEC database are given, together with a concrete example of applying this database.

     
    more » « less
  2. Abstract

    Dayside solar‐produced concentratedFregion plasma can be transported from the midlatitude region into the polar cap during geomagnetically disturbed period, creating plasma density irregularities like polar cap patches, which can cause scintillation and degrade performance of satellite communication and navigation at polar latitudes. In this paper, we observed and investigated a dynamic formation process of a polar cap patch during the 13 October 2016 intense geomagnetic storm. During the storm main phase, storm‐enhanced density (SED) was formed within an extended period of strong southward interplanetary magnetic field (IMF) Bzcondition. Total electron content (TEC) map shows that a polar cap patch was segmented from the SED plume. The Sondrestrom Incoherent Scatter Radar (ISR) was right underneath the segmentation region and captured the dynamic process. It shows that the patch segmentation was related with a sudden northeastward flow enhancement reaching ~2 km/s near the dayside cusp inflow region. The flow surge was observed along with abruptEregion electron temperature increase,Fregion ion temperature increase, and density decrease. The upstream solar wind and IMF observations suggest that the flow enhancement was associated with dayside magnetic reconnection triggered by a sudden and short period of IMF Bynegative excursion. Quantitative estimation suggests that plasma density loss due to enhanced frictional heating was insufficient for the patch segmentation because the elevatedFregion density peaking at ~500 km made dissociative recombination inefficient. Instead, the patch was segmented from the SED by low‐density plasma transported by the fast flow channel from earlier local time.

     
    more » « less
  3. Abstract

    Ion upflow in theFregion and topside ionosphere can greatly influence the ion density and fluxes at higher altitudes and thus has significant impact on ion outflow. We investigated the statistical characteristics of ion upflow and downflow using a 3‐year (2011–2013) data set from the Poker Flat Incoherent Scatter Radar (PFISR). Ion upflow is twice more likely to occur on the nightside than on the dayside in PFISR observations, while downflow events occur more often in the afternoon sector. Upflow and downflow on the dayside tend to occur at altitudes ~500 km, higher than those on the nightside. Both upflow and downflow occur more frequently as ion convection speed increases. Upflow observed from 16 to 6 magnetic local time through midnight is associated with temperature and density enhancements. Occurrence rates of upflow on the nightside and downflow on the dayside increase with geomagnetic activity level. On the nightside, occurrence rate of ion upflow increases with enhanced solar wind and interplanetary magnetic field (IMF) drivers as well as southwestward local magnetic perturbations. The lack of correlation of upflow on the dayside with the solar wind and IMF parameters is because PFISR is usually equatorward of the dayside auroral zone. Occurrence rate of downflow does not show strong dependence on the solar wind and IMF conditions. However, it occurs much more frequently on the dayside when the IMFBy > 10 nT and the IMFBz < −10 nT, which we suggest is associated with the decaying of the dayside storm‐enhanced density (SED) and the SED plume.

     
    more » « less
  4. Abstract

    The segmentation mechanism of polar cap patches is agreed to be related to temporal changes of interplanetary magnetic field or transient reconnection. In this letter, using Global Ionosphere Thermosphere Model driven by two‐way coupled Block‐Adaptive‐Tree‐Solarwind‐Roe‐Upwind‐Scheme and Rice Convection Model, a new segmentation mechanism is proposed. This mechanism works as follows: A strong boundary flow between the Region 1 and Region 2 field‐aligned currents develops, while a shielding process develops in the inner magnetosphere. As the partial ring current drifts westward, the peak of the boundary flow also moves westward. This strong boundary flow raises the ion temperature through enhanced frictional heating, enhances the chemical recombination reaction rate, and reduces the electron density. When this boundary flow crosses the storm‐enhanced density (SED) plume, the plume will be segmented into patches. No external interplanetary magnetic field variations or transient reconnections are required in this mechanism.

     
    more » « less
  5. Abstract

    Postsunset midlatitude traveling ionospheric disturbances (TIDs) and equatorial plasma bubbles (EPBs) were simultaneously observed over American sector during the geomagnetic storm on 8 September 2017. The characteristics of TIDs are analyzed by using a combination of the Millstone Hill incoherent scatter radar data and 2‐D detrended total electron content (TEC) from ground‐based Global Navigation Satellite System receivers. The main results associated with EPBs are as follows: (1) stream‐like structures of TEC depletion occurred simultaneously at geomagnetically conjugate points, (2) poleward extension of the TEC irregularities/depletions along the magnetic field lines, (3) severe equatorial and midlatitude electron density (Ne) bite outs observed by Defense Meteorological Satellite Program and Swarm satellites, and (4) enhancements of ionosphereFlayer virtual height and vertical drifts observed by equatorial ionosondes near the EPBs initiation region. The stream‐like TEC depletions reached 46° magnetic latitudes that map to an apex altitude of 6,800 km over the magnetic equator using International Geomagnetic Reference Field. The formation of this extended density depletion structure is suggested to be due to the merging between the altitudinal/latitudinal extension of EPBs driven by strong prompt penetration electric field and midlatitude TIDs. Moreover, the poleward portion of the depletion/irregularity drifted westward and reached the equatorward boundary of the ionospheric main trough. This westward drift occurred at the same time as the sudden expansion of the convection pattern and could be attributed to the strong returning westward flow near the subauroral polarization stream region. Other possible mechanisms for the westward tilt are also discussed.

     
    more » « less